46 research outputs found

    On-line field measurements of BVOC emissions from Norway spruce (Picea abies) at the hemiboreal SMEAR-Estonia site under autumn conditions

    Get PDF
    We investigated biogenic volatile organic compound (BVOC) emissions from a Norway spruce (Picea abies) in a hemiboreal mixed forest in autumn. Measurements were performed at the SMEAR-Estonia forest station, using PTR-MS techniques and a dynamic branch enclosure system. Parallel to BVOC measurements, atmospheric (CO2, CH4, H2O, CO) and meteorological (temperature, relative humidity, global radiation, wind speed, precipitation) parameters were monitored in the ambient atmosphere and inside the enclosure (temperature, relative humidity, ozone). Prior to the measuring period, a new inlet line consisting of 19.4 m of heated and isolated glass tube was constructed. The new inlet system allowed the on-line detection and calculation of sesquiterpene (SQT) emission rates for the first time for a hemiboreal forest site. In total, 12 atmospherically relevant BVOCs were continuously monitored during the measurement campaign and the emission rates of terpenoid species and predominant oxygenated VOCs were estimated, with monoterpenes to be emitted the most, followed by acetone, acetaldehyde and sesquiterpenes

    Fighting Fusarium Pathogens in the Era of Climate Change: A Conceptual Approach

    Get PDF
    Fusarium head blight (FHB) caused byFusariumpathogens is one of the most devastating fungal diseases of small grain cereals worldwide, substantially reducing yield quality and food safety. Its severity is increasing due to the climate change caused by weather fluctuations. Intensive research on FHB control methods has been initiated more than a decade ago. Since then, the environment has been rapidly changing at regional to global scales due to increasing anthropogenic emissions enhanced fertilizer application and substantial changes in land use. It is known that environmental factors affect both the pathogen virulence as well as plant resistance mechanisms. Changes in CO(2)concentration, temperature, and water availability can have positive, neutral, or negative effects on pathogen spread depending on the environmental optima of the pathosystem. Hence, there is a need for studies of plant-pathogen interactions in current and future environmental context. Long-term monitoring data are needed in order to understand the complex nature of plants and its microbiome interactions. We suggest an holobiotic approach, integrating plant phyllosphere microbiome research on the ecological background. This will enable the development of efficient strategies based on ecological know-how to fightFusariumpathogens and maintain sustainable agricultural systems

    Project FASTGRID - Tests on 2G HTS for its Application in DC Resistive SC FCL

    Get PDF
    HVDC (High Voltage Direct Current) super-grids could become a future solution for the long-distance power-transmission. The Superconducting Fault Current Limiter (SCFCL) is a necessary facility to protect such transmission lines. In the framework of the project FASTGRID dedicated HTS wires for resistive type DC-SCFCL are under development. To reduce the cost per switching capacity: Reduction of the amount of HTS shall be achieved by increasing the allowed electrical field and the critical current density at operating conditions. A wire with an additional laminated 500 µm Hastelloy® shunt is the basic solution for FASTGRID. This work shows experiments on this prospective solution, compared with tests on bare coated conductors at lower E-field, once applied in ECCOFLOW SCFCL. The goal of this work is the validation of the HTS conductor for an electric field higher than 130 V/m for a fault clearing time of 50 ms

    Characteristics of new-particle formation at three SMEAR stations

    Get PDF
    We analyzed the size distributions of atmospheric aerosol particles measured during 2013-2014 at Varrio (SMEAR I) in northern Finland, Hyytiala (SMEAR II) in southern Finland and Jarvselja (SMEAR-Estonia) in Estonia. The stations are located on a transect spanning from north to south over 1000 km and they represent different environments ranging from subarctic to the hemi-boreal. We calculated the characteristics of new-particle-formation events, such as the frequency of events, growth rate of nucleation mode particles, condensation and coagulation sinks, formation rate of 2 nm and 3 nm particles, and source rate of condensable vapors. We observed 59, 185 and 108 new-particle-formation events at Varrio, Hyytiala and Jarvselja, respectively. The frequency of the observed events showed an annual variation with a maximum in spring. The analysis revealed size dependence of growth rate at all locations. We found that the growth rate and source rate of a condensable vapor were the highest in Jarvselja and the lowest in Varrio. The condensation sink and particle formation rate were of a similar magnitude at Hyytiala and Jarvselja, but several times smaller at Varrio. Tracking the origin of air masses revealed that the number concentration of nucleation mode particles (3-25 nm) varied from north to south, with the highest concentrations at Jarvselja and lowest at Varrio. Trajectory analysis indicated that new-particle-formation events are large-scale phenomena that can take place concurrently at distant stations located even 1000 km apart. We found a total of 26 days with new-particle-formation events occurring simultaneously at all three stations.Peer reviewe

    Annual cycle of Scots pine photosynthesis

    Get PDF
    Photosynthesis, i.e. the assimilation of atmospheric carbon to organic molecules with the help of solar energy, is a fundamental and well-understood process. Here, we connect theoretically the fundamental concepts affecting C-3 photosynthesis with the main environmental drivers (ambient temperature and solar light intensity), using six axioms based on physiological and physical knowledge, and yield straightforward and simple mathematical equations. The light and carbon reactions in photosynthesis are based on the coherent operation of the photosynthetic machinery, which is formed of a complicated chain of enzymes, membrane pumps and pigments. A powerful biochemical regulation system has emerged through evolution to match photosynthesis with the annual cycle of solar light and temperature. The action of the biochemical regulation system generates the annual cycle of photosynthesis and emergent properties, the state of the photosynthetic machinery and the efficiency of photosynthesis. The state and the efficiency of the photosynthetic machinery is dynamically changing due to biosynthesis and decomposition of the molecules. The mathematical analysis of the system, defined by the very fundamental concepts and axioms, resulted in exact predictions of the behaviour of daily and annual patterns in photosynthesis. We tested the predictions with extensive field measurements of Scots pine (Pinus sylvestris L.) photosynthesis on a branch scale in northern Finland. Our theory gained strong support through rigorous testing.Peer reviewe

    CarbonSink+: Accounting for multiple climate feedbacks from forests

    Get PDF
    Forests cool the climate system by acting as a sink for carbon dioxide (CO2) and by enhancing the atmospheric aerosol load. whereas the simultaneous decrease of the surface albedo tends to have a warming effect. Here, we present the concept of CarbonSink+. which considers these combined effects. Using the boreal forest environment as an illustrative example, we estimated that accounting for the CarbonSink+ enhances the forest CO2 uptake by 10-50% due to the combined effects of CO2 fertilization and aerosol-induced diffuse radiation enhancement on photosynthesis. We further estimated that with afforestation or reforestation, i.e., replacing grasslands with forests in a boreal environment, the radiative cooling due to forest aerosols cancels most of the radiative warming due to decreased surface albedos. These two forcing components have. however, relatively large uncertainty ranges. resulting in large uncertainties in the overall effect of CarbonSink+. We discuss shortly the potential future changes in the strength of CarbonSink+ in the boreal region, resulting from changes in atmospheric composition and climate.Peer reviewe

    The legacy of Finnish-Estonian air ion and aerosol workshops

    Get PDF
    Atmospheric air ions, clusters and aerosol particles participate in a variety of atmospheric processes and considerably affect e.g. global climate and human health. When measured, air ions as well as atmospheric clusters and particles have been observed to be present practically always and everywhere. In this overview, we present a brief summary of the main achievements and legacy of the series of workshops organized mainly by the University of Helsinki and the University of Tartu. The legacy covers the development and standardization of new instruments, such as ion spectrometers, mass spectrometers and aerosol particle counters, as well as work toward theoretical understanding of new-particle formation and evolution of atmospheric clusters. One important legacy is the establishment of the SMEAR-Estonia station at Jarvselja.Peer reviewe

    The importance of sesquiterpene oxidation products for secondary organic aerosol formation in a springtime hemiboreal forest

    Get PDF
    Secondary organic aerosols (SOAs) formed from biogenic volatile organic compounds (BVOCs) constitute a significant fraction of atmospheric particulate matter and have been recognized to significantly affect the climate and air quality. Atmospheric SOA particulate mass yields and chemical composition result from a complex mixture of oxidation products originating from a diversity of BVOCs. Many laboratory and field experiments have studied SOA particle formation and growth in the recent years. However, a large uncertainty still remains regarding the contribution of BVOCs to SOA. In particular, organic compounds formed from sesquiterpenes have not been thoroughly investigated, and their contribution to SOA remains poorly characterized. In this study, a Filter Inlet for Gases and Aerosols (FI-GAERO) combined with a high-resolution time-of-flight chemical ionization mass spectrometer (CIMS), with iodide ionization, was used for the simultaneous measurement of gas-phase and particle-phase oxygenated compounds. The aim of the study was to evaluate the relative contribution of sesquiterpene oxidation products to SOA in a springtime hemiboreal forest environment. Our results revealed that monoterpene and sesquiterpene oxidation products were the main contributors to SOA particles. The chemical composition of SOA particles was compared for times when either monoterpene or sesquiterpene oxidation products were dominant and possible key oxidation products for SOA particle formation were identified for both situations. Surprisingly, sesquiterpene oxidation products were the predominant fraction in the particle phase in some periods, while their gas-phase concentrations remained much lower than those of monoterpene products. This can be explained by favorable and effective partitioning of sesquiterpene products into the particle phase. The SOA particle volatility determined from measured thermograms increased when the concentration of sesquiterpene oxidation products in SOA particles was higher than that of monoterpenes. Overall, this study demonstrates that sesquiterpenes may have an important role in atmospheric SOA formation and oxidation chemistry, in particular during the spring recovery period.Peer reviewe
    corecore